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us (SCYLV) P0, a member of the highly heterologous proteins of poleroviruses, is
a suppressor of posttranscriptional gene silencing (PTGS) and has additional activities not seen in other P0
proteins. The P0 protein in previously tested poleroviruses (Beet western yellows virus and Cucurbit aphid-
borne yellows virus), suppresses local, but not systemic, PTGS induced by both sense GFP and inverted repeat
GF using its F-box-like domain to mediate destabilization of the Argonaute1 protein. We now report that the
SCYLV P0 protein not only suppressed local PTGS induced by sense GFP and inverted repeat GF in Nicotiana
benthamiana, but also triggered a dosage dependent cell death phenotype in infiltrated leaves and
suppressed systemic sense GFP-PTGS. Deletion of the first 15 N-terminal amino acid residues of SCYLV P0
abolished suppression of both local and systemic PTGS and the induction of cell death. In contrast, only
systemic PTGS and cell death were lost when the 15 C-terminal amino acid residues were deleted. We
conclude that the 15 C-terminal amino acid residue region of SCYLV P0 is necessary for suppressing systemic
PTGS and inducing cell death, but is not required for suppression of local PTGS.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Sugarcane yellow leaf virus (SCYLV), the causal agent of sugarcane
yellow leaf disease (Borth et al., 1994; Comstock et al., 1998; Rott et al.,
2008; Schenk et al., 1997; Vega et al., 1997), is a member of the Lu-
teoviridae family, and has apparently arisen through recombination
between a Polerovirus, a Luteovirus, and an Enamovirus (Moonan et al.,
2000). The 5′-part of the SCYLV genome is of Polerovirus origin (Smith
et al., 2000); the first open reading frame (ORF) in poleroviruses is
termed P0. The deduced amino acid sequence of P0 proteins is highly
conserved among different geographic isolates of SCYLV (Abu Ahmad
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et al., 2006). However the amino acid sequence identity between
polerovirus P0s is very low. The best match of SCYLV P0 (P0SC) to any
other Polerovirus P0 is to Potato leaf roll virus (PLRV) P0 (P0PL) which
has 21% sequence identity. Despite the wide sequence differences, the
P0 proteins of three tested poleroviruses (Beet western yellows virus
(BWYV), PLRV, and Cucurbit aphid-borne yellows virus (CABYV)) are all
suppressors of local posttranscriptional gene silencing (PTGS) (Pfeffer
et al., 2002). The CABYV P0 (P0CA) and BWYV P0 (P0BW) suppressor
proteins contain an F-box-like domain that is required for suppressor
activity (Pazhouhandeh et al., 2006); these proteins suppress PTGS by
destabilizing Argonaute1 (Ago1) protein (Baumberger et al., 2007;
Bortolamiol et al., 2007).

Agrobacterium-mediated co-infiltrations of sense GFP (sGFP) with
P0BW, P0PL, or P0CA led to the suppression of local PTGS in GFP transgenic
N. benthamiana. However, systemic silencing was not suppressed. The
GFP in systemic leaves showed “vein proximal silencing” at 15 d post-
infiltration (d.p.i.) that spread throughout the entire leaves over time
(Pfeffer et al., 2002). Both P0BW and P0CA also suppressed PTGS induced
bydsGFor “GFFG” inwild typeN. benthamiana (Baumberger et al., 2007).
We now report that the P0SC protein has unique RNA silencing activities
in addition to suppressing local sGFP-PTGS anddsGF-PTGS. In contrast to
P0BW, P0PL, and P0CA, P0SC causes a dosage-dependent cell death
phenotype in the infiltrated areas of N. benthamiana leaves as early as
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1 d.p.i. and it suppresses systemic sGFP-PTGS. In addition, while P0BW

and P0CA are strong suppressors of local dsGF-PTGS, P0SC has limited
suppressing activity which diminishes beyond 6 d.p.i. and is accom-
panied by a delayed cell death phenotype in the infiltrated leaves. We
also show through P0SC deletion analysis that the C-terminal 15 amino
acid residues are required for suppression of systemic sGFP-PTGS and
induction of the cell death phenotype.

Results

We examined whether P0SC, from amonocot-infecting virus, was a
suppressor of PTGS like the characterized P0 proteins from dicot-
infecting poleroviruses (Pfeffer et al., 2002). Since various suppressor
proteins act at different stages of the silencing pathway to protect
target mRNA from PTGS directed degradation, the stage at which P0SC

acted was also investigated. We also mapped, through deletion
analysis, the regions of P0SC that are required for suppressor activity
(Fig. 1). P0SC and deletion constructs were tested in a preliminary
screen using Agrobacterium leaf infiltration assays in N. benthamiana
(Johansen and Carrington, 2001; Llave et al., 2000). We selected full-
length P0SC, Δ2, Δ2–15, Δ69–90, Δ148–256, Δ241–256 and Δ255–256
deletions for further analysis based on the results summarized in Fig.1.

P0SC suppresses local sGFP-PTGS and induces cell death

The use of sGFP to induce PTGS requires a dsRNA intermediate that
is acted on by RNaseIII-like dicers to produce 21–24 nt siRNAs. The
dsRNA is formed by the action of RDR6 and cofactors on various single
stranded RNAs (Curaba and Chen, 2008; Luo and Chen, 2007;
Wassenegger and Krczal, 2006). Wild-type (WT) N. benthamiana
leaves infiltrated with sGFP plus empty vector (MT), the positive
control for induction of PTGS, showed GFP fluorescence that had
already declined by 3 d.p.i (Fig. 2A, MT). In contrast, p19, P0CA, P0SC

and P0SC deletions (Δ2, Δ2–15, Δ69–90, Δ148–256, Δ241–256 and
Δ255–256) had levels of varying PTGS suppressor activity (Fig. 2A).
However, p19, P0CA, P0SC, Δ2, Δ241–256 (and Δ212–256, Δ226–256;
not shown) and Δ255–256 all had high levels of GFP fluorescence that
Fig. 1. Schematic representation of P0SC and P0SC deletion constructs that were used in the
transgenic N. benthamiana line 16c. Both local and systemic-PTGS were monitored under UV
amino acid residue, +++ (solid bars) are constructs with full suppressor activity, – – – (open
dotted bar (UT, untranslatable mRNA, the cross is a stop codon that replaced the start codo
persisted well after 6 d.p.i. unlike Δ2–15, Δ69–90 and Δ148–256. The
differences in suppressor activities indicated that the various dele-
tions caused a partial loss of activity. Intriguingly, P0SC, Δ2, and Δ255–
256 resulted in a cell death phenotype that was visible as early as 1 d.
p.i. (Fig. 2A, see photographs taken at 3 d.p.i. under normal light). The
cell death phenotype was not evident in infiltrations with P0CA whose
expression, like that of P0SC, was driven by the CaMV35S promoter
under the same conditions. To further explore the cell death
phenotype, we checked for DNA laddering (a marker for programmed
cell death); there was none, indicating that generalized necrosis,
rather than PCD, is likely the type of cell death (results not shown).

PTGS induced by sGFP degrades target GFPmRNA thereby reducing
the amount of transcripts available for translation into a fluorescent
protein. Our visual observations were confirmed by northern blot
analysis of GFP mRNA isolated from infiltrated leaves of N. benthami-
ana that were harvested at 3 d.p.i. (Fig. 2B, lanes 1–11). The MT
infiltration that stopped fluorescing at 3 d.p.i., had the lowest levels of
GFP mRNA in infiltrated leaves, followed by Δ2–15, Δ69–90 and
Δ148–256 that were each slightly higher than MT controls, while
constructs p19, P0CA, P0SC, Δ2, Δ241–256 and Δ255–256 all strongly
protected GFP mRNA (compare lanes 1, 6–8 with 2–5, 9 and 10). The
variation in suppressing activities between P0SC and the deletion
constructs was not due to instability of their expressed mRNAs which
could be detected at similar levels in northern blots (Figs. 2C, lanes 4–
10). In all cases the non-infiltrated control did not show any GFP or
P0SC mRNAs (Figs. 2B and C, lane 11).

The hallmark of PTGS is the appearance of 21–24 nt siRNAs in the
silenced tissue (Hamilton and Baulcombe, 1999). These siRNAs have
been analyzed using GF and P probes to determine whether P0SC (and
its deletions) preferentially affect the accumulation of 5′- or 3′-derived
siRNAs (Boutet et al., 2003; Zhang et al., 2008). There was an equal
accumulation of high levels of 21/22–24 nt GF and P siRNAs in MT (Fig.
2D,17hEx/3hEx/16hEx, lane 1), possibly caused by the use of full length
GFP to induce PTGS. It is also possible that transiently expressed GFP in
the WT N. benthamiana background produced suitable substrates for
RDR6-dependent dsRNA formation. The dsRNA produced was a good
substrate for all the dicers responsible for producing the 21/22 and 24
preliminary screening for suppressor activity against local sGFP-PTGS in WT and GFP
light and photographs taken at 6 and 14 d.p.i. respectively. The numbers denote the P0SC

bars) are constructs with no suppressor activity, s, systemic silencing evident at 6 d.p.i.,
n), hatched bars, suppressor activity against local-PTGS.



Fig. 2. (A) Agro-infiltration ofWTN. benthamiana leaveswith sGFP plus empty vector (MT), p19, P0CA, P0SC,Δ2,Δ2–15,Δ69–90,Δ148–256,Δ241–256 andΔ255–256 photographswere
taken at 3 d.p.i. under UV illumination. The green leaf photographs taken under normal light show the cell death phenotype caused by P0SC. (B) northern blot analysis of 10 μg ofmRNA
fractionated on 1.6% formaldehyde-agarose gel, transferred to Hybond-XL membrane and probed with radioactively labeled GFP DNA fragment. (C) Hybond-XL membrane in B was
stripped and reprobedwith radioactively labeled P0SC DNA fragment. (D) siRNA blot probed with an in vitro-transcribed 32P [α-dUTP] radioactive sense GF RNA, exposed for 17 h–3 d.
After 3 d, the same blotwas stripped and probedwith an in vitro-transcribed radioactive sense P RNA and exposed for 16 h. The ethidium bromide stained gels showequal RNA loading.
Lanes: 1, empty vector-pGD, 2, p19 positive control suppressor protein fromTBSV, 3, P0CA positive control suppressor protein froma polerovirus, CABYV, 4, P0SC a candidate suppressor
protein fromSCYLV also a polerovirus, 5–10, P0SC deletionsΔ2,Δ2–15,Δ69–90,Δ148–256,Δ241–256 andΔ255–256) and 11, non-infiltrated sample. Note that in all Figs. where siRNAs
were analysed, the RA value is the relative abundance of both size classes of the siRNAs in the infiltrated test leaf samples compared to those in the control sample (MT).
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nt size classes of siRNAs. P0SC, Δ2, and Δ255–256, like p19 and P0CA,
greatly reduced both GF and P 21/22–24 nt siRNAs (Fig. 2D, 17hEx/
16hEx, lanes 2–5, 10) but did not eliminate the siRNAs completely (Fig.
2D, 3dEx, lanes 2–5, 10). Interestingly, the P0SC deletions Δ2–15, Δ69–
90 and Δ148–256 selectively accumulated high levels of the 21/22 nt
size classes of GF and P siRNAs compared to MT (lanes 6–8, and 1). In
contrast, the deletion Δ241–256 preferentially accumulated the 24 nt
size class of GF and, to a lesser extent, P siRNAs (Fig. 2D, lane 9). There
was a visible siRNA size shift from 21/22–24 to 22–24 nt effected by
P0CA, P0SC andΔ241–256 in the GF siRNA blot (Fig. 2D, lanes 3, 4 and 9).
In all cases, no siRNAs were found in RNAs isolated from the non-
infiltrated leaves (Fig. 2D, lane 11). There was no P0SC directed
preference for either the 5′- or 3′-siRNAs (Fig. 2D, lane 4). Given that
the GFP fluorescence, mRNA and siRNA levels for sGFP-PTGS in p19,
P0CA and P0SC infiltrated tissues were similar, we further examined
whether these suppressors similarly affected dsGF-PTGS that pre-
cluded RDR6 and cofactors in WT N. benthamiana.

P0SC has limited suppressor activity against dsGF-PTGS

Previous studies have shown that P0CA and P0BW suppress PTGS
induced by dsGF (GFFG) in WT N. benthamiana (Bortolamiol et al.,
2007). We investigated the relative suppressor activities of P0SC and
P0CA by co-infiltration experiments with sGFP plus dsGF into WT
N. benthamiana leaves and also monitored GFP expression under UV
light at 3 and 6 d.p.i. (Figs. 3A and E). The PTGS induced by dsGF
effectively reduced GFP fluorescence in leaves co-infiltrated with MT
even as early as 1 d.p.i. and was absent at 3 d.p.i. (Fig. 3A). Leaves
infiltrated with p19 showed higher GFP fluorescence compared to
either P0CA or P0SC (Fig. 3A). The P0SC and P0CA infiltrated leaves had
similar GFP fluorescence at 3 d.p.i. The GFP fluorescence in P0SC

infiltrated leaves, like that of p19 and P0CA, persisted but at very low
levels beyond 6 d.p.i., suggesting only limited P0SC suppressor activity
against dsGF-PTGS (Fig. 3E). Intriguingly, the rapid cell death
phenotype associated with P0SC plus sGFP infiltrations was delayed
and less necrotic (compare Figs. 3A and E, P0SC, at 3 and 6 d.p.i.).

Northern blot analysis was used to determine the correlation
between the observed GFP fluorescence and its mRNA. dsGF-PTGS
reduced target GFPmRNA levels inMT infiltrations to barely detectable
levels compared to p19, P0CA and P0SC (Figs. 3B, lanes 1–4 and 3F, lanes
2–5). At 6 d.p.i., P0SC weakly protected GFP mRNA (Fig. 3F, lane 5)
compared to p19 and P0CA (Fig. 3F, lanes 3–4).

dsGF-PTGS was verified by analysis of both GF primary and P
secondary siRNAs at 3 d.p.i. (Fig. 3D) and at 6 d.p.i. (Fig. 3H). In all



Fig. 3. (A and E) Agro-infiltration ofWT N. benthamianawith dsGF and sGFP plus empty vector (MT), p19, P0CA, P0SC the photographs for the different leaf infiltrations were taken at 3
and 6 d.p.i. under UV light. (B–C and F–G) northern blots of 10 μg each of mRNA isolated from infiltrated leaves collected at 3 and 6 d.p.i. were probed with radioactively labeled GFP
and P0SC DNA fragments. (D and H) GF and P siRNA blot analysis of 5 μg of small RNAs isolated from agro-infiltrated leaves at 3 and 6 d.p.i. fractionated on 15% PAGE–7M Urea gel. The
Hybond N+ membrane bound small RNAs were probed with a 32P [α-dUTP] in vitro-transcribed sense GF or sense P mRNA and exposed for 2–6 h and 16 h–3 d or 2–6 h and 16 h–3 d
respectively using a Phosphor Imager. In all cases equal RNA loading was checked by ethidium bromide staining of gels and photographs were taken before RNA was transferred to
membranes. Lanes: 1, non-infiltrated sample (C), 2, empty vector (MT), (B) blank-no sample loaded, 3, p19, 4, P0CA, 5, P0SC.
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cases the control sample (C) did not show any siRNAs (Figs. 3D and H,
lanes 1). Unlike p19 (a suppressor that specifically binds duplex
siRNAs), both P0SC and P0CA, just like MT, had no effect on the levels of
GF 21–24 nt primary siRNAs derived from the direct action of dicers
on dsGFmRNA stem at 3 d.p.i. (RA; Fig. 3D, 2hEx/6hEx, lanes 2–5). The
primary GF siRNAs require RDR6 and cofactors to produce the 3′
secondary P siRNAs from the P-region of GFP mRNA not initially
targeted by dsGF, via transitivity. The P secondary siRNAs were
similarly reduced in the presence of P0SC or P0CA compared to MT but
not to the same extent as in p19 (RA; Fig. 3D, 16hEx/36hEx, lanes 2–5).
The levels of GF primary siRNAs were higher than the P secondary
siRNAs since dsGF was used to induce PTGS (Fig. 3D, compare RA; GF
siRNA/2hEx/6hEx and P siRNA/16hEx/36hEx). Although P0CA and P0SC

had similar amounts of both GF and P siRNAs, P0CA infiltrations
showed GFP fluorescence that persisted beyond 6 d.p.i. (Figs. 3A and
E, P0CA and P0SC) and protected higher amounts of GFP mRNA (Figs.
3B, lanes 3–4 and F, lanes 4–5). Both GF and P siRNAs were also
analyzed at 6 d.p.i. to determine the differences between P0SC and
P0CA. At 6 d.p.i., MT infiltrated leaves accumulated higher levels of 21/
22–24 nt GF siRNAs than at 3 d.p.i. (compare Figs. 3D and H, 2hEx,
lane 2). Interestingly both p19 and P0CA accumulated more of the 21/
22 nt size class than the 24 nt size class, a result not seen at 3 d.p.i.
(Figs. 3D and H, lanes 3–4). There was a noticeable siRNA size shift in
P0SC infiltrated leaves from the 21 nt to the 22 nt siRNAs, whereas the
24 nt siRNAs were comparable to p19 and P0CA (Figs. 3D and H,
compare lanes 3 and 4 with 5). The siRNAs size shift was not
detectable in the GF siRNA blots analyzed from samples harvested at
3 d.p.i. The differences in siRNA accumulation were evident when the
GF siRNA blots were exposed for 4 h (Fig. 3H, 4hEx).

Analysis of P siRNAs produced surprising results that may explain
the differences in suppressor activity observed between P0CA and
P0SC. Leaves infiltrated with MT had the highest levels of 21/22 and 24
nt P siRNAs compared to p19, P0CA and P0SC (Fig. 3H, 29hEx/3dE, lanes
2 and 3–5). Both p19 and P0CA had reduced levels of all size classes of P
siRNAs although P0CA clearly showed 21/22 and 24 nt sizes (Fig. 3H,
29hEx/3dEx, lanes 3 and 4). P0SC distinctly prevented the accumula-
tion of the 21 nt P siRNAs while supporting high amounts of 22–24 nt
siRNAs (Fig. 3H, 29hEx/3dEx, lane 5).

P0SC suppresses local and systemic sGFP-PTGS, and induces a cell
death phenotype

PTGS in plants is divided into two forms; local and systemic
(Palauqui and Vaucheret, 1998; Vaucheret et al., 1998; Voinnet et al.,
1998; Voinnet, 2005). We investigated the effect of P0SC and deletions
of P0SC on both local and systemic PTGS induced by sGFP in a GFP
transgenic N. benthamiana line 16c background. Lower leaves of GFP
transgenic plants were co-infiltrated with sGFP plus the respective
test or control constructs. At 3 d.p.i., the initially up-regulated GFP
expression in MT infiltrations had declined compared to p19, P0CA,
P0SC and P0SC deletions (Δ2, Δ2–15, Δ69–90, Δ148–256, Δ241–256
and Δ255–256) (Fig. 4A, inserts of infiltrated primary leaves under UV
light). As early as 1 d.p.i., P0SC, Δ2 and Δ255–256, unlike P0CA, induced
the characteristic cell death phenotype previously observed in wild-
type N. benthamiana infiltrations (Fig. 4A, P0SC, Δ2 and Δ255–256, cell
Fig. 4. (A) Local leaves of GFP transgenic N. benthamiana line 16c agro-infiltrated with sGFP
Δ255–256 are shown as inserted photographs taken at 3 d.p.i. under UV light. The inserted
associated with the P0SC, Δ2 and Δ255–256 infiltrations. Initiation of systemic PTGS was m
whole plants showing “vein proximal GFP silencing” of distal leaves. (B) northern blot analys
The blots were sequentially probed with radioactively labeled GFP DNA and stripped then r
micrograms of total small RNAs isolated from infiltrated local leaves were fractionated on 15
hybridized with in vitro-transcribed radioactive sense GF mRNA and then stripped and hybri
3 d and the P siRNA blot for 16 h. Equal small RNA loading is shown by the ethidium bromid
membrane. Lanes: 1, empty vector (MT), 2, p19, 3, P0CA, 4, P0SC, 5–10, P0SC deletions (Δ2, Δ2
16c, 12–21, systemic leaves of plants infiltrated as outlined for lanes 1–10.
death phenotype indicated by yellow arrows in inserts under normal
light).

The intensity of fluorescence in the infiltrated patches correlated
with themRNA levels determined by northern blot analysis of samples
harvested at 3 d.p.i. (Fig. 4B, lanes 1–11). The amount of GFP mRNA
was lowest in leaves co-infiltrated with MTand Δ2–15 (Fig. 4B, lanes 1
and 6) compared to the non-infiltrated control sample (Fig. 4B, lane
11). Samples Δ69–90 and Δ148–256 had similar GFP mRNA levels as
the control (Fig. 4B, lanes 7–8, and 11). GFP mRNA levels for P0SC, Δ2,
Δ241–256 and Δ255–256 co-infiltrations were significantly lower
than those of p19 and P0CA probably reflecting the effect of cell death
or differences in expression levels of p19 and P0CA compared to P0SC

and its deletions (Fig. 4B, see lanes 4, 9–10 and 2–3). mRNA levels of
P0SC and its deletions were approximately equal in the infiltrated
leaves except for Δ2 and Δ148–256 that were low, whereas Δ241–256
was much stronger (Fig. 4B, P0 mRNA, lanes 4, 6–10 and 5).

The infiltrated plants were monitored under UV light for the
initiation of systemic silencing in the newly emerging leaves. At 10 d.p.
i., all plants infiltrated with MT, P0CA, Δ2–15, Δ69–90, Δ148–256 and
Δ241–256 showed the characteristic veinproximal GFP silencing in the
new leaves (Fig. 4A). The limited systemic silencing observed in plants
infiltrated with P0CA has not been previously reported but is probably
due to low expression levels of P0CA protein, the effect of Ago1 on the
extensive spreading of systemic silencing (Jones et al., 2006) or CABYV
not infectingN. benthamiana (Lecoq et al., 1992) (Fig. 4A, compare P0CA

to MT, Δ2–15, Δ69–90, Δ148–256 and Δ241–256). Interestingly, the
P0SC and its deletions (Δ2, Δ255–256) that induced the cell death
phenotype suppressed both local and systemic silencing. However,
Δ241–256 that did not induce the cell death phenotype suppressed
local but not systemic PTGS induced by sGFP (Fig. 4A, Δ241–256).
While systemic silencingwas evident in P0CA andΔ241–256 plants, the
infiltrated leaves still strongly fluoresced (Fig. 4A, P0CA, Δ241–256;
infiltrated leaves indicated by black arrowheads). Systemic silencing
was further explored by determining GFP mRNA levels in the newly
emerging leaves of the infiltrated plants (Fig. 4B, lanes 12–21). MT,
P0CA, Δ2–15, Δ69–90 and Δ241–256 constructs that failed to suppress
systemic silencing had reduced mRNA levels compared to the non-
infiltrated control, p19, P0SC, Δ2 and Δ255–256 (Fig. 4B, lanes 12, 14,
17–18, 20 compared to 11, 13, 15, 16 and 21). GF and P siRNAs were
analyzed by northern blots to confirm PTGS (Fig. 4C). In contrast toWT
N. benthamiana infiltrations, MT accumulated mostly 21 nt GF and P
siRNAs compared to the 24 nt class (Fig. 4C, lane 1). In agreement with
WT N. benthamiana infiltrations (Fig. 2D), p19, P0CA, P0SC, Δ2 and
Δ255–256 drastically reduced the amount of 21–24 nt GF and P siRNAs
(Fig. 4C, lanes 2–5 and 10) without completely eliminating the siRNAs
(Fig. 4C, 3dEx, lanes 2–5 and 10). Deletions Δ2–15, Δ69–90 and Δ148–
256, that did not suppress local and systemic PTGS preferentially
accumulated higher amounts of 21 nt siRNAs than the 24 nt siRNAs
compared to MT infiltrated tissues (Fig. 4C, 17hExp/3dEx/16hEx, lanes
1 and6–8). TheΔ241–256deletion distinctly accumulated theGFandP
24 nt siRNAs instead of the 21 nt siRNAs (lane 9). The selective
accumulation of the 24 nt siRNAs was particularly interesting given
that Δ241–256 only suppressed local, but not systemic PTGS and also
failed to induce the cell death phenotype. In all cases the non-
infiltrated control did not accumulate any siRNAs (Fig. 4C, lane 11).
plus empty vector (MT), p19, P0CA, P0SC, Δ2, Δ2–15, Δ69–90, Δ148–256, Δ241–256 or
photographs taken under normal light show the cell death phenotype (yellow arrows)
onitored under UV light and was evident at 10 d.p.i. as indicated in the photographs of
is of mRNA isolated from infiltrated local leaves at 3 d.p.i. and systemic leaves at 13 d.p.i.
eprobed with P0SC. The ethidium bromide stained gel show equal RNA loading. (C) Five
% PAGE–7 M Urea gel and electrotransferred to Hybond N+. The membranes were first
dized with a similarly labeled sense P probe. The GF siRNA blots were exposed for 17 h–
e stained PAGE gel photograph taken before transfer of the fractionated small RNAs to a
–15, Δ69–90, Δ148–256, Δ241–256, Δ255–256), 11, GFP transgenic N. benthamiana line
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Fig. 5. (A) GFP transgenic N. benthamiana line 16c infiltrations of local leaves with dsGF and sGFP plus empty vector (MT), p19, P0CA, and P0SC to determine the suppressor activity of
P0SC against dsGF-PTGS. The inserted photographs of the infiltrated local leaves were taken at 3 d.p.i. under UV light. The infiltrated local leaves at 10 d.p.i. are indicated by black
arrows whereas the halo ring is shown by a yellow arrow. The characteristic vein proximal GFP silencing was evident in the distal leaves of some whole plant photographs. The
numbers in parentheses indicate the plants that showed systemic silencing out of total plants tested at 10 d.p.i. except for p19 that showed two phenotypes; no systemic silencing (18/
20) and systemic-PTGS (2/20). (B) Northern blot analysis of 10 μgmRNA sequentially hybridized with radioactively labeled GFP and P0SC DNA probes was used to determine the levels
of both GFP and P0SC mRNA from the infiltrated leaves sampled at 3 d.p.i. A GFP probe similarly labeled was used to determine GFP mRNA isolated from systemic leaves at 10 d.p.i. In
all cases an ethidium bromide stained gel photograph was taken before mRNA transfer to show equal RNA loading. Lanes: 1, empty vector (MT), 2, p19, 3, P0CA, 4, P0SC. C, In vitro-
transcribed sense GF and P probes were used to determine the accumulation of siRNAs from infiltrated local leaf samples. The GF siRNA blots were exposed for 2–6 h while the P
siRNA blots were exposed for 16 h–3 d. Lanes: 1, non-infiltrated GFP transgenic N. benthamiana line 16c (C), 2, empty vector (MT), 3, p19, 4, P0CA, 5, P0SC.
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P0SC does not suppress systemic dsGF-PTGS

Local leaves of GFP transgenic N. benthamiana line 16c co-
infiltrated with dsGF and sGFP plus relevant test or control constructs
were monitored under UV light for GFP fluorescence at 3 d.p.i. The
leaves co-infiltrated with MT (Fig. 5A) did not show any fluorescence
indicating local PTGS although the leaf had not yet turned red as seen
at 10 d.p.i. (Fig. 5A, MT, insert of infiltrated leaf at 3 d.p.i. and infiltrated
leaf at 10 d.p.i. shown by black arrow). The leaves infiltrated with p19
fluoresced strongly while those infiltrated with P0CA and P0SC had
similar intensities at 3 d.p.i. (Fig. 5A, inserts in p19, P0CA and P0SC).
Interestingly, at 10 d.p.i. the leaves infiltrated with MT had turned red
showing complete local PTGS while those infiltrated with P0SC

showed the cell death phenotype surrounded by a characteristic red
halo (Fig. 5A, MT and P0SC, indicated by black and yellow arrows
respectively). The red halo is indicative of short-distance cell-to-cell
movement of the silencing signal also reported for P0BW (Baumberger
et al., 2007).
The cell death phenotype was significantly delayed in this
infiltration compared to sGFP plus P0SC (Fig. 2A, P0SC and Δ2
photographs taken under normal light at 3 d.p.i.). In contrast, the
leaves infiltrated with p19 and P0CA still fluoresced strongly at 10 d.p.i.
(Fig. 5A, p19 and P0CA, infiltrated leaves indicated by black arrows).
We did not observe the red halo in P0CA infiltrated leaves as previously
reported for the related P0BW. At 10 d.p.i., 80% or more of the plants
whose primary leaves were infiltratedwith empty vector, P0SC, or P0CA

showed prominent vein proximal GFP silencing in the newly emerging
leaves (Fig. 5A, MT, P0CA and P0SC, whole plant). These results show
that although P0CA and P0SC both suppress local dsGF-PTGS to varying
degrees, they both fail to exert the same effect on systemic PTGS. In
contrast, only 10% of the plants infiltrated with p19 showed systemic
dsGF-PTGS while 90% had strong GFP fluorescence in the newly
emerging leaves (Fig. 5A, p19, whole plant).

The GFP fluorescence in local infiltrated leaves at 3 d.p.i. was
correlated with GFPmRNA levels by northern blot analysis. GFP mRNA
fromMT infiltrated tissues was barely detectable which corresponded
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with the weak fluorescence observed (Fig. 5B, lane 1). In contrast,
leaves infiltrated with p19 that persistently showed strong fluores-
cence (beyond 10 d.p.i.) had the highest levels of GFP mRNA (Fig. 5B,
lane 2). Although both P0CA and P0SC protected GFP mRNA, P0CA was
more effective than P0SC (Fig. 5B, lanes 3–4). P0SC mRNA was highly
expressed at 3 d.p.i. even though P0SC did not protect GFP mRNA as
effectively as p19 and P0CA (Fig. 5B, lanes 2, 3 and 4). The GFP mRNA
levels were also determined in the newly emerging leaves of the
infiltrated plants at 10 d.p.i. The mRNA in systemic leaf tissues was
very low in MT infiltrated plants although the plants showed the
same phenotype as those infiltrated with P0CA and P0SC (Fig. 5B, GFP
mRNA systemic/10 d.p.i., lane 1). Systemic leaves from plants
infiltrated with p19 had much higher levels of mRNA compared to
P0CA and P0SC (Fig. 5B, lanes 2, 3 and 4). Both P0CA and P0SC had
similarly low levels of GFP mRNA that were higher than those in MT
infiltrated plants.

PTGS in local leaves was confirmed by siRNA analysis of GF primary
and P secondary siRNAs (Fig. 5C). The hairpin-forming dsGF effectively
induced PTGS as shown by the high amounts of 21–24 nt GF siRNAs in
the MT infiltrated leaves (Fig. 5C, 2hEx, lane 1). Infiltrations with p19,
P0CA, and P0SC accumulated 60–80% of 21–24 nt GF siRNAs compared
to MT (Fig. 5C, lanes 3–5 and 2). Exposure of the siRNA blot for 6 h
showed that both P0SC and P0CA had only a slight effect on the
Fig. 6. (A) Dosage-dependent cell death phenotype and associated suppression of systemic s
16c with sGFP plus P0SC (undiluted), P0SC (1:5), P0SC (1:10), P0SC (1:20) and P0SC (1:50). Note t
50. Systemic sGFP-PTGS was constantly monitored under UV light and results recorded for 21
systemic silencing while the denominator is the total number of plants agro-infiltrated. (B)
leaves at 28 d.p.i. was carried out using GFP and P0SC radioactively labeled DNA probes. (C)
infiltrated leaves and fractionated on 15% PAGE–7 M Urea gel, onto Hybond N+. The me
respectively. The GF and P radioactively probed blots were exposed for 4 and 3 d respective
controls. Lanes: 1, empty vector (MT), 2, p19, 3, P0CA, 4, P0SC, 5–8, P0SC diluted 1:5, 1:10, 1:2
C, lanes 1–8 are the same as those for northern blots in B except for lane 9 that show non-
accumulation of GF siRNAs compared to the MT infiltrations (Fig. 5C,
GF siRNA/6hEx). On the other hand, the RDR6-dependent P siRNAs in
p19, P0CA, and P0SC infiltrations accumulated 20–50% of the levels in
MT infiltrated leaves (Fig. 5C, 16hEx and P siRNA/3dEx).

Cell death phenotype induced by P0SC is dosage dependent

We further investigated if the cell death phenotype associatedwith
P0SC was dosage-dependent and whether P0SC lost its suppressor
activity against systemic sGFP-PTGS at low concentrations. At 10 d.p.i.
100% of the plants infiltrated with sGFP plus empty vector (MT) and
50% of those infiltrated with P0CA and P0SC (1:5 dilution) were
systemically silenced (Fig. 6A, and photographs not shown). In
contrast, plants infiltrated with p19 and undiluted P0SC were not
systemically silenced even after 3 weeks. At 10 d.p.i., infiltrations of
sGFP plus diluted (1:5–50) P0SC did not induce the cell death
phenotype and diluted P0SC progressively lost systemic-PTGS sup-
pressing activity (50–94% of plants showed systemic silencing).
Although the diluted P0SC failed to suppress systemic PTGS, the
infiltrated primary leaves had strong GFP fluorescence indicating very
strong suppressor activity against local sGFP-PTGS (results not
shown). This suggests that the cell death phenotype is dependent
on the concentration of P0SC used for infiltrations.
GFP-PTGS determined by infiltrating local leaves of GFP transgenic N. benthamiana line
hat the agrobacterium strain carrying P0SC was serially diluted by a factor of 5,10, 20 and
d. The numbers for example 0/15, the numerator denotes the number of plants showing
Northern analysis of mRNA isolated from local infiltrated leaves at 3 d.p.i. and systemic
siRNA blots were prepared by transferring 5 μg of total small RNAs, isolated from local
mbrane bound siRNAs were sequentially probed with in vitro-transcribed GF and P
ly using a Phosphor Imager. Ethidium bromide stained gels were used as RNA loading
0 and 1:50, 9–16, same as in local leaves using systemic leaves sampled at 28 d.p.i. In

infiltrated GFP transgenic N. benthamiana line 16c.
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Using northern blot analysis, we further explored whether the
strong GFP fluorescence that we observed corresponded with the
protection of mRNA by the suppressor activity of P0SC. At 3 d.p.i., the
empty vector had greatly reduced levels of GFP mRNA compared to
p19, P0CA, P0SC and P0SC dilutions (Fig. 6B, lanes 1 and 2–8). The
diluted P0SC protected GFP mRNA more than the undiluted P0SC that
also induced the cell death phenotype. As expected, the P0SC mRNA
expression decreased with increasing dilution (Fig. 6B, P0SC mRNA
panel, lanes 4–8). Importantly, regardless of the very low mRNA
expression levels of P0SC (1:50), P0SC still protected high amounts of
GFP mRNA (Fig. 6B, GFP mRNA and P0SC mRNA, lane 8). Although the
diluted samples of P0SC effectively suppressed local sGFP-PTGS, they
failed to prevent systemic silencing (Fig. 6A, 10 d.p.i.). We compared
the effects of p19, P0CA and P0SC with diluted P0SC on GFP mRNA
transcript levels in newly-emerging leaves by northern blot analysis.
The diluted P0SC suppressed GFP mRNA silencing in a concentration
dependent manner (Fig. 6B, lanes 12–16). P0SC (1:5 dilution) protected
GFPmRNA to the same extent as p19 and undiluted P0SC (Fig. 6B, lanes
10, 12 and 13). P0CA and all diluted P0SC infiltrations did not induce the
cell death phenotype and also failed to suppress systemic PTGS.
Nevertheless, the two proteins were remarkably different in that P0CA

at 28 d.p.i., just like MT, failed to protect GFP mRNA, whereas all the
diluted P0SC samples had detectable GFP mRNA levels (Fig. 6B,
compare lanes 9 and 11, then 9 and 11 with 13–16).

Since all the diluted P0SC samples suppressed local sGFP-PTGS, we
determined if there were any detectable differences in the amounts of
GF and P siRNAs at 3 d.p.i. The siRNA blot that was probed with GF
showed a higher accumulation of 21/22-nt siRNA in tissues infiltrated
with MT (Fig. 6C, lane 1; also see Fig. 4C) compared to the barely
detectable levels of both size class siRNAs for p19 (lane 2). P0CA and
P0SC comparably reduced the amount of both size classes of GF siRNAs
(Fig. 6B, lanes 3 and 4). Intriguingly, diluted P0SC showed a distinct
effect on GF siRNAs by accumulating relatively high amounts of the
24-nt siRNAs while the 21/22-nt siRNAs were not detected (Fig. 6C,
lane 5). Increased dilutions of P0SC favored the reappearance of the 21/
22-nt siRNAs that were not detectable in P0SC (1:5) (Fig. 6C, compare
lanes 6–8 with 5).

The siRNA blots were stripped and reprobed with sense P mRNA to
determine the levels of secondary siRNAs. Both size classes of P siRNAs
were produced at very low levels in the presence of a suppressor of
local PTGS (Fig. 6C, P siRNA, compare lanes 9,1 and 2–6). Nevertheless,
both size classes of P siRNAs accumulated to lower levels in
infiltrations with diluted P0SC (1:10, 1:20, 1:50) compared to
infiltrations with MT (Fig. 6C, lanes 7–8 and 1). It is important to
note that for the same infiltration with mutants of P0SC (Δ2–15, Δ69–
90 and Δ148–256; Fig. 4C, lanes 6–9) there was a distinct and equal
accumulation of both GF and P siRNAs.

Discussion

SCYLV P0SC suppression of local sGFP-PTGS

We have demonstrated through detailed molecular analyses that
P0SC, like previously studied dicot-infecting polerovirus P0 proteins, is
a strong suppressor of local sense GFP-PTGS. Sense GFP-PTGS requires
RDR6 (Dalmay et al., 2000; Mourrain et al., 2000), AGO1 (Morel et al.,
2002), WEX (Glazov et al., 2003), SDE3 (Dalmay et al., 2001; Himber et
al., 2003) and DCL4 (Dunoyer et al., 2005; Gasciolli et al., 2005; Xie et
al., 2005). PTGS is induced by dsRNA formed from over-expressed sGFP
mRNA via the action of RDR6 (Curaba and Chen, 2008; Luo and Chen,
2007; Wassenegger and Krczal, 2006). The dsRNA is acted upon by
RNAseIII-like dicers 2–4 but not dicer 1, (Finnegan et al., 2003) to
produce 21/22–24 nt siRNAs. It is the 21–22 nt class that guides the
endonucleolytic RNA induced silencing complex (RISC) to degrade
target mRNA. P0SC, like the known suppressors p19 and P0CA, strongly
up-regulate GFP expression by reducing siRNAs (Fig. 2D, lanes 2–4)
thereby protecting target mRNA (Fig. 2B, lanes 2–4) from PTGS-
directed degradation. P0SC, like P0CA or P0BW, specifically eliminated
the 21 nt siRNAs and greatly reduced the accumulation of 22–24 nt
siRNAs (Fig. 2D; Pfeffer et al., 2002). In the absence of the 21 nt siRNA
producing DCL4, DCL2 produces 22 nt siRNAs that can be used as
guides for GFP mRNA degradation. Both P0CA and P0BW are known to
act through destabilization of Ago1 (Baumberger et al., 2007;
Bortolamiol et al., 2007), a “slicer” component of the RISC complex
in the PTGS pathway (Baumberger and Baulcombe, 2005). If P0CA and
P0BW primarily interfere with Ago1 in sGFP-PTGS downstream of
siRNA production, the levels of siRNAs in P0CA should be the same as
in the empty vector.

The overall reduction in siRNA levels indicates that Ago1 probably
acts upstream of dsRNA in sGFP-PTGS via Ago1-siRNA tagging of
aberrant RNAs (including the cleavage products from AGO1 slicing
activity) for RDR6-directed dsRNA formation (Brodersen and Voinnet,
2006; Wassenegger and Krczal, 2006). The results of P0 leaf
infiltrations (Fig. 2D, lanes 3–4) may also indicate that P0SC and P0CA

affect all of the dicers or parts of the dicer modules (Axtell et al., 2006;
Brodersen and Voinnet, 2006). The P0SC deletions Δ2–15, Δ69–90 and
Δ148–256 all reduced suppressor activity as shown by high amounts
of 21–22 nt siRNAs (Fig. 2D, lanes 6–8). The 21/22 nt siRNAs are the
principal guides in mRNA degradation while the 24 nt siRNAs are not
involved. Our results showing selective accumulation of the 24, and to
a lesser extent the 22 nt, siRNAs in Δ241–256, a deletion that has full
suppressor activity (Fig. 2D, lane 9), support the hypothesis that P0SC

preferentially interferes with DCL4 and to a lesser extent DCLs 2 and 3
or that the deletion interacts with the DCL4-specific cofactor DRB4
(Haas et al., 2008). Our deletion analysis results also indicate that the
C-terminal 15 amino acid residues of P0SC are not required for effective
suppression of sGFP-PTGS.

P0SC, unlike P0CA, induces a rapid cell death phenotype when
transiently expressed in N. benthamiana leaves. Since we did not
determine the mRNA levels of P0CA, the observed differences between
P0SC and P0CA may be due to different expression levels. The cell death
phenotype has not been reported for previously studied P0 proteins
(Pfeffer et al., 2002; Pazhouhandeh et al., 2006; Baumberger et al.,
2007). However, transgenic potato plants expressing P0PL, a weak
suppressor of PTGS (Pfeffer et al., 2002), manifested severe phenotypic
distortions that were similar to symptoms typical of PLRV infected
plants (van der Wilk et al., 1997). Furthermore, transgenic Arabidopsis
seedlings expressing P0BW, a strong suppressor of PTGS that targets
Ago1, failed to develop beyond the embryogenic stage. When mature
P0BW transgenic plants produced using an estradiol-inducible XVE
vector system (Bortolamiol et al., 2007) were treated with estradiol,
they showed upward curling and severe crinkling of new leaves. The
failure of Arabidopsis seedlings to develop beyond the embryogenic
stage show that P0BW affects an early stage in plant development that
is mediated by the Ago1-microRNA interaction while P0PL affects a
later stage. The consistent pleotropic effects elicited by other
polerovirus P0 proteins raise the question of whether the cell death
phenotype induced by P0SC is a result of the interaction with both
Ago1 and any of the DCLs 2–4.

The P0s of poleroviruses are generally cytopathic, however, the
P0SC induced cell death phenotype is particularly extreme and rapid.
Every P0SC deletion, except Δ241–256, that lost the induction of cell
death phenotype also failed to suppress both local and systemic sGFP-
PTGS and greatly reduced the accumulation of siRNAs (Fig. 2D, lanes 4,
5 and 10). The reduction of all siRNA size classes may be more than a
non-specific effect of cell death.

Suppression of systemic sGFP-PTGS

We used GFP transgenic N. benthamiana line 16c to test whether
P0SC suppresses systemic sGFP-PTGS and whether the cell death
phenotype is dosage-dependent. The suppression of systemic
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silencing by P0SC and its deletion constructs may be due to the effects
of cell death. This hypothesis is supported by infiltration with Δ241–
256, a deletion that suppressed local PTGS but failed to inhibit
systemic PTGS and did not induce the cell death phenotype. P0SC may
be blocking the movement or production of the systemic signal
because of factors involved in cell death.

The siRNA accumulation in sGFP-PTGS in a GFP transgenic
background differed from that in WT N. benthamiana in that the
former preferentially accumulated the DCL4-dependent 21 nt size
class while the latter accumulated all sizes at similar levels (Figs. 4C
and 2D, lane 1). The preferential accumulation of the 21 nt siRNAs
suggests that DCL4 is the major dsRNA cleaving enzyme, an
observation that was previously noted in IR-PTGS (Brodersen and
Voinnet, 2006; Gasciolli et al., 2005; Fusaro et al., 2006; Liu et al.,
2007). Although no specific siRNAs have been identified as being
responsible for systemic silencing signaling (Hamilton et al., 2002;
Mallory et al., 2001; Mlotshwa et al., 2002; Brosnan et al., 2007;
Dunoyer and Voinnet, 2008), the accumulation of the 24 nt siRNA in
P0SC Δ241–256 points to a possible role of this siRNA species.

The cell death phenotype is dependent on the dosage of P0SC, but
P0SC dilutions did not affect the suppressor activity against local sGFP-
PTGS (Fig. 6B). In fact, diluted P0SC protected increased levels of GFP
mRNA by effectively reducing the 21–22 nt siRNAs (Fig. 6C, lanes 5–6)
perhaps by mitigating cytopathic effects. P0SC prevented the
accumulation of DCL2 and DCL4-dependent 21–22 nt siRNAs in a
dosage-dependent manner (Fig. 6C, lanes 5–8) in an agro-infiltration
system that preferentially favors DCL4 to act on RDR6-produced GFP
dsRNA. However, diluted P0SC failed to suppress systemic silencing
(Fig. 6A). Because we only diluted P0SC and not sGFP or the combi-
nation of sGFP and P0SC in co-infiltrations as previously reported for
Tobacco rattle virus (TRV)-encoded 16-kDa suppressor (Martínez-
Priego et al., 2008), we cannot conclude that the cell death phenotype
is responsible for the suppression of systemic sGFP-PTGS. Further-
more, the plants that were infiltrated with the non-cell death
inducing P0SC dilutions, but not P0CA or MT, showed GFP mRNA
protection in systemic leaves that were sampled at 28 d.p.i. The
suppression conferred by a P0SC (1:5) dilution, as shown in Fig. 6B
(lanes 10 and 13) was equivalent to that of p19, a known strong
suppressor of systemic sGFP-PTGS.

Suppression of local and systemic dsGF-PTGS

dsGF-PTGS can occur in rdr6, sgs3 and ago1 mutants (Beclin et al.,
2002) by direct action of DCLs 2, 3 and 4 on hairpin RNAs (Fusaro et al.,
2006). We tested whether P0SC suppressed PTGS induced by dsGF that
precluded RDR6-dependent dsRNA in both WT and GFP transgenic N.
benthamiana backgrounds. P0CA reduced the levels and did not affect
the size of secondary P siRNAs as previously reported (Baumberger et
al., 2007; Bortolamiol et al., 2007), but we clearly observed the 21, 22
and 24 nt siRNAs (Liu et al., 2007; Mette et al., 2000; Fig. 3H, 29hEx/
3dEx, lane 4). In contrast, the presence of P0SC abolished the accu-
mulation of the RDR6-dependent DCL4 specific 21 nt siRNAs (Fig. 3H,
29hEx/3dEx, lane 5). This result strongly suggests that P0SC targets
DCL4, or an RDR6/DCL4 module, leaving DCLs 2 and 3 to produce the
22–24 nt secondary siRNAs from GFP. This result is equivalent to GUS
transgenic Arabidopsis dcl4 mutants transformed with ΔGUS–SUG
(Mlotshwa et al., 2008) and previous reports (Fusaro et al., 2006;
Moissiard et al., 2007; Liu et al., 2007). The limited P0SC suppressor
activity against local dsGF-PTGS suggests that DCL4 is important, but
not essential, for this type of silencing, which is also consistent with
previous reports (Fusaro et al., 2006). In GFP transgenic N.
benthamiana, both P0SC and P0CA suppressed local, but not systemic,
dsGF-PTGS (Figs. 5A and B, lanes 3–4). P0SC plants showed the
characteristic red fluorescent halo ring surrounding the infiltrated leaf,
which is characteristic of the cell-to-cell movement of the silencing
signal.
Mode of P0SC action

The P0CA and P0BW both targeted destruction of Ago1 protein,
which is consistent with suppression of local, but not systemic PTGS.
Because siRNA production is upstream of Ago1-RISC complex, loss of
Ago1 activity should not interfere with the production of siRNAs that
may act as the systemic signal of PTGS. Instead, loss of Ago1 prevents
the formation of an active RISC complex that is required for target
mRNA cleavage and also limit the extent of systemic silencing (Jones et
al., 2006). Since P0SC did suppress systemic PTGS (triggered by sGFP),
it presumably has a different or additional modes of action, from other
P0s. This hypothesis is supported by the reduced levels of siRNAs
produced in response to P0SC expression. Curiously, P0CA and P0BW

block the accumulation of siRNAs generated in response to a sGFP
trigger (this paper; Pazhouhandeh et al., 2006; Pfeffer et al., 2002), but
siRNAs accumulate abundantly when PTGS is triggered by a dsRNA
hairpin (Baumberger et al., 2007; Bortolamiol et al., 2007). These
differences in levels of siRNAs suggest that Ago1, in addition to its
“slicer” activity, has some role in siRNA production from sRNA
templates, but not from dsRNA templates. Alternatively, P0CA and
P0BW may have an activity that suppresses siRNA production from an
aberrant mRNA template in addition to destroying Ago1 activity. We
conclude that P0SC from a monocot-infecting virus targets DCL4 and
clearly differs functionally from previously characterized P0 proteins.
Future research will further characterize these differences, especially
the rapid cell death phenotype, since DCL4 and Ago1 play a critical role
in developmental timing and specifying adaxial/abaxial identities of
the leaf (Liu et al., 2007; Adenot et al., 2006; Gasciolli et al., 2005;
Garcia et al., 2006; Yang et al., 2006).

Materials and methods

Plant materials and growth conditions

WTand GFP transgenic N. benthamiana plants were grown at 25 °C
under 12 h illumination at 2000 lmm−2 (34W fluorescent bulbs). The
GFP transgenic N. benthamiana line 16c which contains a single copy
of pBin-35S-mGFP5 (mGFP; GenBank accession no. U70495.1; Hasel-
off et al., 1997; Siemering et al., 1996) was a generous gift from Dr.
David Baulcombe.

Constructs

Binary plasmids containing sGFP (pBICGFP), dsGFP (inverted
repeats; pBICdsGFP), and TBSV p19 (pBICp19), all under the control
of the CaMV 35S promoter (Takeda et al., 2002) and used in N.
benthamiana leaf infiltration experiments with Agrobacterium, were
obtained as generous gifts from Dr. Kazuyuki Mise. The GFP gene used
in pBICGFP and pBICdsGFP is “smGFP” a modified version of mGFP5
(Davis and Vierstra, 1998). The smGFP has 90% overall nucleotide
sequence identity with the stably integrated GFP gene (mGFP5) in line
16c; the two GFP genes share 3 regions of greater than 150 bp each
with 100% identity. All the PCR amplifications for expression
constructs in this paper were performed with Phusion DNA
polymerase kit (Finnzymes). P0SC, UTP0 (untranslatable; start codon
ATG replaced by stop codon TGA) and P0 deletion constructs were PCR
amplified from plasmid pFM262 (Moonan et al., 2000) using primers
(see Table 1 for primer sequences) with 5′ BglII and 3′ SalI restriction
sites and cloned into the TA vector pCRIITOPO (Invitrogen). The P0SC,
UTP0 and deletion fragments were cloned from BglII–SalI digests of
pCRIITOPO into corresponding sites of a binary plasmid pGD that uses
the CaMV 35S promoter (Goodin et al., 2002). The resulting constructs
were designated pGDP0, pGDUTP0 and pGDP0Δ (relevant amino acids
deleted for example; 69–90). pGD was used as the “empty vector”
control in all the infiltration experiments. The internal deletion
construct, P0Δ69–90, was made by PCR amplification of the entire



Table 1
Primers used for PCR amplification of genes used to make expression constructs and
siRNAs oligo size markers

Primer Sequence

BglIIP0F agatctATGCTTTTCAACGAATTC
BglIIP0UTF TCGAagatctGACTTTTCACCGAATTCTCTGT
BglIIP0(2)F ggtaacatctATGTTCAACGAATTCTCTGTT
BglIIP0(15)F ggtaagatcgatgCACGAAAGCACTTCACC
BglIIP0(30)F ggtaagatcgatgTTGACCTACTACAGAGTCTT
BglIIP0(69)F GACagatctATGCTGGAGCACATTCGCCTTAT
BglIIP0(91)F GACagatctATGGGACGGCACATCCATTCCATATTAAG
BglIIP0(126)F agatctATGGTACTCGAGCAAGATC
BglIIP0(136)F agatctATGCTTTTCCGAACTCAGCT
BglIIP0(148)F agatctATGGATGTTTTTCAAGATG
SalIP0R CGTAgtcgacCTATATATCATGAGAATAGGTG
SalIP0(256)R agctgtcgacctaATCATGAGAATAGGTGCTAC
SalIP0(255)R agctgtcgacctaATGAGAATAGGTGCTACGAC
SalIP0(241)R agctgtcgacctaCTCATTAGGTGGTAGACCAT
SalIP0(226)R agctgtcgacctaATTATCAAAATCGGTTTCCA
SalIP0(212)R CGAgtcgacGATGTCATCGTCATGATCAAGCG
SalIP0(147)R gtcgacCAACCCAGCATACTGGAGT
SalIP0(90)R gtcgacTCCAATGGTTGTGTCTGGC
SalIP0(68)R gtcgacCCAGTTGTAAACGGGAGTG
TMDP0(69)R p-CCAGTTGTAAACGGGAGTGTTGGGG
TMDP0(91)F p-CGGCACATCCATCCATATTAAGAGACAGT
GF5 CACTGGAGTTGTCCCAATTC
GF3 CTTCAGCACGTGTCTTGTAG
P5 CAACAGGATCGAGCTTAAGG
P3 GTAATCCCAGCAGCTGTTAC
GF25nt GCCCATTAACATCACCATCTAATTC
GF23nt TTGTGCCCATTAACATCACCATC
GF21nt TCCGTATGTTGCATCACCTTC
P24nt GTCTGCTAGTTGAACGCTTCCATC
P22nt TTCCAACTTGTGGCCGAGGATG
P21nt CCCTTAAGCTCGATCCTGTTG

Lower case nucleotides indicate modifications added to facilitate cloning, p indicates 5′
phosphorylation, F and R represent forward and reverse primers respectively and UT,
untranslatable.

48 T. Mangwende et al. / Virology 384 (2009) 38–50
pGDP0 plasmid with 5′-phosphorylated abutting primers starting
from residues 68 and 91 respectively. The PCR product was
circularized by blunt end-ligation and digested with DpnI to remove
any residual parental plasmid before transformation into competent
Top10 E. coli cells (Invitrogen).

For construction of dsGF, a GF fragment was amplified from
pBICGFP (Takeda et al., 2002) using the GF5 and GF3 primers (Table 1)
and cloned into pCR8 (Invitrogen, Inc.). Orientation of the fragment
with respect to the attL1 and attL2 sites on pCR8 was verified by
digestionwith enzymes NdeI and XbaI. The GF fragment in the 5′ to 3′
orientation (pML401) was cloned into pHellsgate8 (Helliwell and
Waterhouse, 2003) using LR Clonase™ (Invitrogen, Inc.). The clone
with the GF fragment in the reverse orientation in pCR8 (pML402) was
used for the GF probe preparation. The P fragment was PCR amplified
using primers P5 and P3 (Table 1) and cloned in pCR8 as for the GF
fragment. The plasmid was designated pML403. All constructs, except
pGDP0Δ1–91which has a silent G to Amutation at nucleotide position
229 of the P0SC ORF, were confirmed correct by sequencing (University
of Hawaii Biotechnology—Molecular Biology Instrumentation Facility).

Agro-infiltration

Agrobacterium tumefaciens C58C1 (Ti plasmid pCH32), a gift from
Dr. David Baulcombe, was transformed with relevant plasmids using
the freeze–thawmethod (Hofgen andWillmitzer, 1988). From here on,
the agrobacterium culture will be referred to using the name of the
protein expressed by the plasmid that was used to transform
competent agrobacterium cells. Infiltrations into N. benthamiana
leaves were carried out as previously described (Llave et al., 2000).
Briefly, a 5 ml overnight culture of A. tumefaciens C58C1 harboring a
relevant binary plasmidwas inoculated into 50ml of LB supplemented
with 50 μg/ml kanamycin, 5 μg/ml tetracycline and 20 μM acetosyr-
ingone. The culture was incubated at 28 °C for 16 h. Agrobacterium
cells were pelleted at 5000 rpm for 10 min and resuspended to an
OD600 of 0.5 in infiltration medium (Llave et al., 2000). The cells were
incubated at room temperature for 3 h before infiltration. For a given
experiment, different agrobacterium mixtures of equal volumes and
the same optical densities were used.

GFP imaging

Plants were illuminated with two 100 W ultraviolet (long
wavelength 365 nm) lamps (Spectroline model SB-100P). Images
were captured with an EOS 10D camera (Canon) and processed using
Microsoft Office Image Manager software.

Total RNA isolation for northern blot analysis

Approximately 2–3 g of frozen fresh samples of infiltrated leaves
were ground to a fine powder in liquid nitrogen and transferred to
50 ml sorval tubes. Six milliliters of HCL–Tris saturated phenol were
added and the tubes were vortexed tomix well before adding 12 ml of
TENS buffer (100 mM NaCl, 10 mM Tris–HCL, 1 mM EDTA and 1% SDS).
The well mixed contents were incubated at 70 °C for 5 min and 5.6 ml
of chloroformwas added and vortexed for 1 min. The tubes were spun
at 10000 rpm for 10 min and 10 ml of the upper aqueous phase was
transferred to a new 50 ml tube. A 1:10 volume of 3 M sodium acetate
(pH 5.2) and 3 volumes of 100% ethanol were added to the aqueous
supernatant. The contents were gently mixed and incubated for 2 h at
−20 °C.

The tubes were spun at 10000 rpm for 10 min, the supernatant
was discarded and the pellet was washed with 5 ml of 70% ethanol.
The tubes were spun at 3000 rpm for 5 min and the 70% ethanol was
removed. The pellet was air dried and resuspended in 200–400 μl of
DEPC treated water. The RNA samples were transferred to eppendorf
tubes and the concentration was determined by a spectrophotometer.

Northern blot analysis

Ten micrograms of high molecular weight RNA isolated from
agrobacterium infiltrated leaves was mixed with 7 μl of RNA cooker
(5 ml deionized formamide, 1.62 ml 37% formaldehyde, 0.4 ml
500 mM HEPES (pH 7.5), 0.02 ml 500 mM EDTA (pH 7.5), and 2.96 ml
sterile DEPC treated water) and incubated at 65 °C for 4 min. The
sample was transferred to ice and 2 μl of bromophenol blue loading
buffer was added. The RNA samples were fractionated on a 1.6%
formaldehyde-agarose gel in HEPES buffer run at 60 V for 2 h. The gel
was stained in HEPES buffer containing ethidium bromide and
photographs were taken. Downward blotting was set up to transfer
mRNA to Hybond-XL membranes (Amersham GE Healthcare) using
20×SSC for 16 h. Thereafter the membrane was heat treated at 80 °C
for 10 min and UV crosslinked at 1200 μJ×100. The membrane was
again heat treated at 80 °C for 2 h and stored at room temperature
until used.

The membrane was briefly washed in 5×SSC for 1 min at room
temperature. The wash solution was discarded and enough Church's
buffer was added to prehybridize the membrane at 65 °C for 2–16 h.
Two DNA probes, GFP and P0SC, were prepared according to
instructions in the Random Prime Labeling kit (Invitrogen) using
radioactive 32P-[dCTP] (Perkin Elmer). Briefly, 25 μl (100–500 ng) each
of GFP and P0SC DNA fragments were boiled, incubated on ice and
random prime mix (2 μl each of dATP, dGTP, dTTP and 15 μl random
primers buffer mix, 5 μl of 32P [α-dCTP], 1 μl of Klenow Fragment
mixed thoroughly by pippeting up and down) were added to an
eppendorf tube. The mixture was incubated at room temperature for
2–3 h. The reaction was stopped by adding 5 μl of stop buffer.
Unincorporated radioactive nucleotides were retained in a Sephadex
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G50 column (Sigma) and the labeled DNA probe was collected in
eppendorf tubes. The probe was boiled for 5 min, added to Church's
buffer/membrane and incubated for 16 h at 65 °C. The membranes
were washed three times as follows: 2×SSC+0.5% SDS at 65 °C for
20 min, 1×SSC+0.25% SDS at 65 °C for 20 min and lastly 0.5×SSC+
0.125% SDS at 65 °C for 20 min. The membrane was covered in saran
wrap and excess wash buffer removed before exposure to X-ray film
for 30 min–16 h.

Total RNA extraction for siRNA blots

Leaves were flash frozen in liquid nitrogen immediately after
harvest and stored at −80 °C until processed. Approximately 100mg of
frozen leaf tissue was ground with mortar and pestle, under liquid
nitrogen, to a fine powder. High and lowmolecular weight RNAs were
isolated together following instructions in the mirVana™ miRNA
isolation kit (Ambion, Inc., USA). Total RNA was recovered in 100 μl of
0.1 mM EDTA (pH 8.0) and stored at −80 °C until used. The concen-
tration was determined by spectrophotometry.

siRNA northern hybridizations

To analyze siRNAs, 5 μg of total RNA from infiltrated leaves were
fractionated on a 15% denaturing polyacrylamide–7 M urea gel in 1X
Tris–borate–EDTA (TBE) buffer. Mixtures of 250 pg each of 21, 23, 25 nt
GF and 21, 22, 25 nt P DNA oligonucleotides were run as size markers
(Table 1). Following electrophoresis, RNAs were visualized by staining
in ethidium bromide (0.5 μg/ml in 1× TBE buffer) and photographed.
The RNA was transferred to Hybond N+ membranes (GE Healthcare,
Inc., USA) by electroblotting in 0.5× TBE at 500 mA for 1 h. The
transferred RNA was UV crosslinked to the membrane at 1200 μJ in a
UV Stratalinker 1800 (Stratagene). Membranes were stored at 4 °C
until probed. Radioactive probes were prepared from cloned frag-
ments of GFP ligated into plasmid vector pCR8. 32P-labelled RNA
transcripts were produced from 1 μg of linearized vector pCR8-GF or P
(pML402 and pML403) using Maxiscript™ in-vitro transcription kits
(Ambion, Inc.) according to the manufacture's protocol. For effective
siRNA hybridization, the sense GF and P probes were partially
hydrolyzed in sodium carbonate buffer (120 mM Na2CO3; 80 mM
NaHCO3) at 60 °C for 3 h and neutralized with 3 M sodium acetate (pH
5.2) before use. The membranes were pre-hybridized in Ultrahybe-
oligo™ (Ambion, Inc.) for 1–3 h at 40 °C. After addition of the RNA
probe, hybridization was performed at 40 °C overnight. Following
hybridization, the membranes were washed 3 times in 2×SSC+0.2%
SDS 40 °C and blots were analyzed on a GS-505 Molecular Imager
System (BioRad, Inc.). The total band intensities of both size classes
of siRNAs in individual lanes were normalized against the band
intensities of the control sample (MT) and used to determine the
relative abundance (RA) of siRNAs. The membranes were reprobed
once after stripping them in 0.1% SDS at 95 °C.
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